TY - JOUR TI - Overcoming target epitope masking resistance that can occur on low-antigen-expresser AML blasts after IL-1RAP chimeric antigen receptor T cell therapy using the inducible caspase 9 suicide gene safety switch AU - Warda, Walid AU - Da Rocha, Mathieu Neto AU - Trad, Rim AU - Haderbache, Rafik AU - Salma, Yahya AU - Bouquet, Lucie AU - Roussel, Xavier AU - Nicod, Clémentine AU - Deschamps, Marina AU - Ferrand, Christophe T2 - Cancer Gene Therapy AB - Although chimeric antigen receptor CAR) T cell immunotherapies are an undeniable and unequivocal success, knowledge obtained from the monitoring of the first clinical trials targeting the CD19 antigen in B malignancies, either refractory/relapsed acute lymphoid leukemia (ALL) or lymphomas, contributed to the identification of tumor cell escape in about 30–50% of B-ALL. Resistance occurred due to loss of surface expression of the antigen (rCD19−) or to the early disappearance or inactivation of CAR T cells (rCD19+). In a recently reported clinical case, rCD19− relapse resulted from masking of the antigen by the CAR at the surface of B-ALL leukemia cells following the unexpected viral transduction of a leukemic cell present in the cytapheresis sample. The objective of this work was to reproduce this epitope-masking resistance model, in the context of acute myeloid leukemia (AML), based on our immunotherapeutic CAR T cell model targeting the accessory protein of the interleukin-1 receptor (IL-1RAP) expressed by leukemic stem cells. As AML primary blasts express different levels of IL-1RAP, we modeled transduction of different AML tumor cell lines screened for density of antigenic sites with our lentiviral vectors carrying a third-generation IL-1RAP CAR, an iCASP9 suicide gene, and a truncated CD19 surface gene. We demonstrated that primary AML blasts can be easily transduced (74.55 ± 21.29%, n = 4) and that CAR T cytotoxicity to IL-1RAP is inversely correlated with epitope masking in relation to the number of antigenic sites expressed on the surface of IL-1RAP+ lines. Importantly, we showed that, in vitro, a 24-h exposure of IL-1RAP+/CAR+ leukemia lines to Rimiducid eliminated >85% of the cells. We confirmed that the expression of IL-1RAP CAR by an IL-1RAP+ leukemic cell, by decreasing the membrane availability of the targeted antigen, can induce resistance while a high epitope density maintains sensitivity to CAR T cells. Moreover, the presence of the iCASP9/Rimiducid suicide system safety switch makes this immunotherapy approach safe for application in a future phase 1 clinical trial. DA - 2021/01/07/ PY - 2021 DO - 10.1038/s41417-020-00284-3 DP - www.nature.com SP - 1 EP - 11 LA - en SN - 1476-5500 UR - https://www.nature.com/articles/s41417-020-00284-3 Y2 - 2021/01/07/20:28:42 ER -