TY - JOUR TI - Integrated genetic and metabolic landscapes predict vulnerabilities of temozolomide resistant glioblastoma cells AU - Immanuel, Selva Rupa Christinal AU - Ghanate, Avinash D. AU - Parmar, Dharmeshkumar S. AU - Yadav, Ritu AU - Uthup, Riya AU - Panchagnula, Venkateswarlu AU - Raghunathan, Anu T2 - npj Systems Biology and Applications AB - Metabolic reprogramming and its molecular underpinnings are critical to unravel the duality of cancer cell function and chemo-resistance. Here, we use a constraints-based integrated approach to delineate the interplay between metabolism and epigenetics, hardwired in the genome, to shape temozolomide (TMZ) resistance. Differential metabolism was identified in response to TMZ at varying concentrations in both the resistant neurospheroidal (NSP) and the susceptible (U87MG) glioblastoma cell-lines. The genetic basis of this metabolic adaptation was characterized by whole exome sequencing that identified mutations in signaling pathway regulators of growth and energy metabolism. Remarkably, our integrated approach identified rewiring in glycolysis, TCA cycle, malate aspartate shunt, and oxidative phosphorylation pathways. The differential killing of TMZ resistant NSP by Rotenone at low concentrations with an IC50 value of 5 nM, three orders of magnitude lower than for U87MG that exhibited an IC50 value of 1.8 mM was thus identified using our integrated systems-based approach. DA - 2021/01/08/ PY - 2021 DO - 10.1038/s41540-020-00161-7 DP - www.nature.com VL - 7 IS - 1 SP - 1 EP - 10 LA - en SN - 2056-7189 UR - https://www.nature.com/articles/s41540-020-00161-7 Y2 - 2021/01/08/20:42:21 ER -